Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Immunol ; 211(5): 844-852, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477665

RESUMO

The lung is a barrier tissue with constant exposure to the inhaled environment. Therefore, innate immunity against particulates and pathogens is of critical importance to maintain tissue homeostasis. Although the lung harbors both myelinating and nonmyelinating Schwann cells (NMSCs), NMSCs represent the most abundant Schwann cell (SC) population in the lung. However, their contribution to lung physiology remains largely unknown. In this study, we used the human glial fibrillary acidic protein promoter driving tdTomato expression in mice to identify SCs in the peripheral nervous system and determine their location within the lung. Single-cell transcriptomic analysis revealed the existence of two NMSC populations (NMSC1 and NMSC2) that may participate in pathogen recognition. We demonstrated that these pulmonary SCs produce chemokines and cytokines upon LPS stimulation using in vitro conditions. Furthermore, we challenged mouse lungs with LPS and found that NMSC1 exhibits an enriched proinflammatory response among all SC subtypes. Collectively, these findings define the molecular profiles of lung SCs and suggest a potential role for NMSCs in lung inflammation.


Assuntos
Lipopolissacarídeos , Transcriptoma , Camundongos , Humanos , Animais , Lipopolissacarídeos/metabolismo , Células de Schwann/metabolismo , Pulmão
2.
Genome Med ; 15(1): 45, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344884

RESUMO

BACKGROUND: Dose-limiting toxicities significantly impact the benefit/risk profile of many drugs. Whole genome sequencing (WGS) in patients receiving drugs with dose-limiting toxicities can identify therapeutic hypotheses to prevent these toxicities. Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting neurological toxicity of chemotherapies with no effective approach for prevention. METHODS: We conducted a genetic study of time-to-first peripheral neuropathy event using 30× germline WGS data from whole blood samples from 4900 European-ancestry cancer patients in 14 randomized controlled trials. A substantial number of patients in these trials received taxane and platinum-based chemotherapies as part of their treatment regimen, either standard of care or in combination with the PD-L1 inhibitor atezolizumab. The trials spanned several cancers including renal cell carcinoma, triple negative breast cancer, non-small cell lung cancer, small cell lung cancer, bladder cancer, ovarian cancer, and melanoma. RESULTS: We identified a locus consisting of low-frequency variants in intron 13 of GRID2 associated with time-to-onset of first peripheral neuropathy (PN) indexed by rs17020773 (p = 2.03 × 10-8, all patients, p = 6.36 × 10-9, taxane treated). Gene-level burden analysis identified rare coding variants associated with increased PN risk in the C-terminus of GPR68 (p = 1.59 × 10-6, all patients, p = 3.47 × 10-8, taxane treated), a pH-sensitive G-protein coupled receptor (GPCR). The variants driving this signal were found to alter predicted arrestin binding motifs in the C-terminus of GPR68. Analysis of snRNA-seq from human dorsal root ganglia (DRG) indicated that expression of GPR68 was highest in mechano-thermo-sensitive nociceptors. CONCLUSIONS: Our genetic study provides insight into the impact of low-frequency and rare coding genetic variation on PN risk and suggests that further study of GPR68 in sensory neurons may yield a therapeutic hypothesis for prevention of CIPN.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Doenças do Sistema Nervoso Periférico , Feminino , Humanos , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Acoplados a Proteínas G/genética , Taxoides/efeitos adversos
3.
Cell Genom ; 3(6): 100302, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37388919

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness, affecting 200 million people worldwide. To identify genes that could be targeted for treatment, we created a molecular atlas at different stages of AMD. Our resource is comprised of RNA sequencing (RNA-seq) and DNA methylation microarrays from bulk macular retinal pigment epithelium (RPE)/choroid of clinically phenotyped normal and AMD donor eyes (n = 85), single-nucleus RNA-seq (164,399 cells), and single-nucleus assay for transposase-accessible chromatin (ATAC)-seq (125,822 cells) from the retina, RPE, and choroid of 6 AMD and 7 control donors. We identified 23 genome-wide significant loci differentially methylated in AMD, over 1,000 differentially expressed genes across different disease stages, and an AMD Müller state distinct from normal or gliosis. Chromatin accessibility peaks in genome-wide association study (GWAS) loci revealed putative causal genes for AMD, including HTRA1 and C6orf223. Our systems biology approach uncovered molecular mechanisms underlying AMD, including regulators of WNT signaling, FRZB and TLE2, as mechanistic players in disease.

4.
Neuron ; 111(17): 2642-2659.e13, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352856

RESUMO

Loss-of-function mutations in Nav1.7, a voltage-gated sodium channel, cause congenital insensitivity to pain (CIP) in humans, demonstrating that Nav1.7 is essential for the perception of pain. However, the mechanism by which loss of Nav1.7 results in insensitivity to pain is not entirely clear. It has been suggested that loss of Nav1.7 induces overexpression of enkephalin, an endogenous opioid receptor agonist, leading to opioid-dependent analgesia. Using behavioral pharmacology and single-cell RNA-seq analysis, we find that overexpression of enkephalin occurs only in cLTMR neurons, a subclass of sensory neurons involved in low-threshold touch detection, and that this overexpression does not play a role in the analgesia observed following genetic removal of Nav1.7. Furthermore, we demonstrate using laser speckle contrast imaging (LSCI) and in vivo electrophysiology that Nav1.7 function is required for the initiation of C-fiber action potentials (APs), which explains the observed insensitivity to pain following genetic removal or inhibition of Nav1.7.


Assuntos
Analgésicos Opioides , Nociceptores , Camundongos , Humanos , Animais , Analgésicos Opioides/farmacologia , Potenciais de Ação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/genética , Células Receptoras Sensoriais , Peptídeos Opioides , Encefalinas , Gânglios Espinais
5.
Nat Commun ; 14(1): 366, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690629

RESUMO

Sensory neurons of the dorsal root ganglion (DRG) are critical for maintaining tissue homeostasis by sensing and initiating responses to stimuli. While most preclinical studies of DRGs are conducted in rodents, much less is known about the mechanisms of sensory perception in primates. We generated a transcriptome atlas of mouse, guinea pig, cynomolgus monkey, and human DRGs by implementing a common laboratory workflow and multiple data-integration approaches to generate high-resolution cross-species mappings of sensory neuron subtypes. Using our atlas, we identified conserved core modules highlighting subtype-specific biological processes related to inflammatory response. We also identified divergent expression of key genes involved in DRG function, suggesting species-specific adaptations specifically in nociceptors that likely point to divergent function of nociceptors. Among these, we validated that TAFA4, a member of the druggable genome, was expressed in distinct populations of DRG neurons across species, highlighting species-specific programs that are critical for therapeutic development.


Assuntos
Gânglios Espinais , Transcriptoma , Camundongos , Humanos , Animais , Cobaias , Gânglios Espinais/metabolismo , Macaca fascicularis , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Sensação , Citocinas/metabolismo
6.
Cell Rep ; 40(8): 111189, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001972

RESUMO

Oligodendrocyte dysfunction has been implicated in the pathogenesis of neurodegenerative diseases, so understanding oligodendrocyte activation states would shed light on disease processes. We identify three distinct activation states of oligodendrocytes from single-cell RNA sequencing (RNA-seq) of mouse models of Alzheimer's disease (AD) and multiple sclerosis (MS): DA1 (disease-associated1, associated with immunogenic genes), DA2 (disease-associated2, associated with genes influencing survival), and IFN (associated with interferon response genes). Spatial analysis of disease-associated oligodendrocytes (DAOs) in the cuprizone model reveals that DA1 and DA2 are established outside of the lesion area during demyelination and that DA1 repopulates the lesion during remyelination. Independent meta-analysis of human single-nucleus RNA-seq datasets reveals that the transcriptional responses of MS oligodendrocytes share features with mouse models. In contrast, the oligodendrocyte activation signature observed in human AD is largely distinct from those observed in mice. This catalog of oligodendrocyte activation states (http://research-pub.gene.com/OligoLandscape/) will be important to understand disease progression and develop therapeutic interventions.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Doenças Neurodegenerativas , Animais , Cuprizona/uso terapêutico , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Oligodendroglia
7.
Cell Rep ; 38(13): 110557, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354047

RESUMO

Astrocytes play critical roles in brain development and disease, but the mechanisms that regulate astrocyte proliferation are poorly understood. We report that astrocyte proliferation is bi-directionally regulated by neuronal activity via NMDA receptor (NMDAR) signaling in neurons. Prolonged treatment with an NMDAR antagonist reduced expression of cell-cycle-related genes in astrocytes in hippocampal cultures and suppressed astrocyte proliferation in vitro and in vivo, whereas neuronal activation promoted astrocyte proliferation, dependent on neuronal NMDARs. Expression of prostaglandin-endoperoxide synthase 2 (Ptgs2) is induced specifically in neurons by NMDAR activation and is required for activity-dependent astrocyte proliferation through its product, prostaglandin E2 (PGE2). NMDAR inhibition or Ptgs2 genetic ablation in mice reduced the proliferation of astrocytes and microglia induced by mild traumatic brain injury in the absence of secondary excitotoxicity-induced neuronal death. Our study defines an NMDAR-mediated signaling mechanism that allows trans-cellular control of glial proliferation by neurons in brain development and injury.


Assuntos
Neurônios , Receptores de N-Metil-D-Aspartato , Animais , Proliferação de Células , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Bioinformatics ; 37(9): 1317-1318, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960962

RESUMO

SUMMARY: We developed the MicrobiomeExplorer R package to facilitate the analysis and visualization of microbial communities. The MicrobiomeExplorer R package allows a user to perform typical microbiome analytic workflows and visualize their results, either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows, the application enables automated analysis report generation. AVAILABILITY AND IMPLEMENTATION: Available at https://github.com/zoecastillo/microbiomeExplorer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microbiota , Software
9.
Cell Rep ; 22(3): 832-847, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29346778

RESUMO

Microglia, the CNS-resident immune cells, play important roles in disease, but the spectrum of their possible activation states is not well understood. We derived co-regulated gene modules from transcriptional profiles of CNS myeloid cells of diverse mouse models, including new tauopathy model datasets. Using these modules to interpret single-cell data from an Alzheimer's disease (AD) model, we identified microglial subsets-distinct from previously reported "disease-associated microglia"-expressing interferon-related or proliferation modules. We then analyzed whole-tissue RNA profiles from human neurodegenerative diseases, including a new AD dataset. Correcting for altered cellular composition of AD tissue, we observed elevated expression of the neurodegeneration-related modules, but also modules not implicated using expression profiles from mouse models alone. We provide a searchable, interactive database for exploring gene expression in all these datasets (http://research-pub.gene.com/BrainMyeloidLandscape). Understanding the dimensions of CNS myeloid cell activation in human disease may reveal opportunities for therapeutic intervention.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
10.
J Exp Med ; 214(9): 2611-2628, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28778989

RESUMO

Loss-of-function mutations in GRN cause frontotemporal dementia (FTD) with transactive response DNA-binding protein of 43 kD (TDP-43)-positive inclusions and neuronal ceroid lipofuscinosis (NCL). There are no disease-modifying therapies for either FTD or NCL, in part because of a poor understanding of how mutations in genes such as GRN contribute to disease pathogenesis and neurodegeneration. By studying mice lacking progranulin (PGRN), the protein encoded by GRN, we discovered multiple lines of evidence that PGRN deficiency results in impairment of autophagy, a key cellular degradation pathway. PGRN-deficient mice are sensitive to Listeria monocytogenes because of deficits in xenophagy, a specialized form of autophagy that mediates clearance of intracellular pathogens. Cells lacking PGRN display reduced autophagic flux, and pathological forms of TDP-43 typically cleared by autophagy accumulate more rapidly in PGRN-deficient neurons. Our findings implicate autophagy as a novel therapeutic target for GRN-associated NCL and FTD and highlight the emerging theme of defective autophagy in the broader FTD/amyotrophic lateral sclerosis spectrum of neurodegenerative disease.


Assuntos
Autofagia/fisiologia , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Animais , Granulinas , Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Progranulinas , Transcriptoma
11.
Elife ; 62017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440222

RESUMO

The PKR-like endoplasmic reticulum kinase (PERK) arm of the Integrated Stress Response (ISR) is implicated in neurodegenerative disease, although the regulators and consequences of PERK activation following neuronal injury are poorly understood. Here we show that PERK signaling is a component of the mouse MAP kinase neuronal stress response controlled by the Dual Leucine Zipper Kinase (DLK) and contributes to DLK-mediated neurodegeneration. We find that DLK-activating insults ranging from nerve injury to neurotrophin deprivation result in both c-Jun N-terminal Kinase (JNK) signaling and the PERK- and ISR-dependent upregulation of the Activating Transcription Factor 4 (ATF4). Disruption of PERK signaling delays neurodegeneration without reducing JNK signaling. Furthermore, DLK is both sufficient for PERK activation and necessary for engaging the ISR subsequent to JNK-mediated retrograde injury signaling. These findings identify DLK as a central regulator of not only JNK but also PERK stress signaling in neurons, with both pathways contributing to neurodegeneration.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Degeneração Neural , Neurônios/enzimologia , eIF-2 Quinase/metabolismo , Animais , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Camundongos , Neurônios/metabolismo
12.
J Alzheimers Dis ; 56(3): 1037-1054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28106546

RESUMO

The common p.D358A variant (rs2228145) in IL-6R is associated with risk for multiple diseases and with increased levels of soluble IL-6R in the periphery and central nervous system (CNS). Here, we show that the p.D358A allele leads to increased proteolysis of membrane bound IL-6R and demonstrate that IL-6R peptides with A358 are more susceptible to cleavage by ADAM10 and ADAM17. IL-6 responsive genes were identified in primary astrocytes and microglia and an IL-6 gene signature was increased in the CNS of late onset Alzheimer's disease subjects in an IL6R allele dependent manner. We conducted a screen to identify variants associated with the age of onset of Alzheimer's disease in APOE ɛ4 carriers. Across five datasets, p.D358A had a meta P = 3 ×10-4 and an odds ratio = 1.3, 95% confidence interval 1.12 -1.48. Our study suggests that a common coding region variant of the IL-6 receptor results in neuroinflammatory changes that may influence the age of onset of Alzheimer's disease in APOE ɛ4 carriers.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Idoso , Idoso de 80 Anos ou mais , Alelos , Animais , Apolipoproteína E4/genética , Astrócitos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Técnicas de Cocultura , Estudos de Coortes , Feminino , Células HEK293 , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Proteínas Recombinantes/metabolismo
13.
Nat Commun ; 7: 11295, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097852

RESUMO

A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing. Using peripheral endotoxemia to establish the method, we reveal highly specific transcriptional responses and altered RNA processing in each cell type, with Tnfr1 required for the astrocytic response. Extending the method to an Alzheimer's disease model, we confirm that transcriptomic changes observed in whole tissue are driven primarily by cell type composition, not transcriptional regulation, and identify hundreds of cell type-specific changes undetected in whole tissue RNA. Applying similar methods to additional models and patient tissues will transform our understanding of aberrant gene expression in neurological disease.


Assuntos
Doença de Alzheimer/genética , Astrócitos/metabolismo , Endotoxemia/genética , Microglia/metabolismo , Neurônios/metabolismo , Transcrição Gênica , Transcriptoma , Adulto , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Especificidade de Órgãos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Análise de Sequência de RNA
14.
BMC Genomics ; 17: 61, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26768488

RESUMO

BACKGROUND: RNA-editing is a tightly regulated, and essential cellular process for a properly functioning brain. Dysfunction of A-to-I RNA editing can have catastrophic effects, particularly in the central nervous system. Thus, understanding how the process of RNA-editing is regulated has important implications for human health. However, at present, very little is known about the regulation of editing across tissues, and individuals. RESULTS: Here we present an analysis of RNA-editing patterns from 9 different tissues harvested from a single mouse. For comparison, we also analyzed data for 5 of these tissues harvested from 15 additional animals. We find that tissue specificity of editing largely reflects differential expression of substrate transcripts across tissues. We identified a surprising enrichment of editing in intronic regions of brain transcripts, that could account for previously reported higher levels of editing in brain. There exists a small but remarkable amount of editing which is tissue-specific, despite comparable expression levels of the edit site across multiple tissues. Expression levels of editing enzymes and their isoforms can explain some, but not all of this variation. CONCLUSIONS: Together, these data suggest a complex regulation of the RNA-editing process beyond transcript expression levels.


Assuntos
Adenosina Desaminase/genética , Especificidade de Órgãos/genética , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Adenosina Desaminase/biossíntese , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Íntrons/genética , Camundongos , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/biossíntese , Transcrição Gênica
15.
Nature ; 520(7547): 307-11, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25877200

RESUMO

Cell line misidentification, contamination and poor annotation affect scientific reproducibility. Here we outline simple measures to detect or avoid cross-contamination, present a framework for cell line annotation linked to short tandem repeat and single nucleotide polymorphism profiles, and provide a catalogue of synonymous cell lines. This resource will enable our community to eradicate the use of misidentified lines and generate credible cell-based data.


Assuntos
Linhagem Celular/classificação , Linhagem Celular/metabolismo , Curadoria de Dados , Guias como Assunto , Separação Celular , Genótipo , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Controle de Qualidade , Reprodutibilidade dos Testes , Especificidade da Espécie , Terminologia como Assunto
16.
J Neurosci ; 34(46): 15327-39, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392500

RESUMO

Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity.


Assuntos
Regulação da Expressão Gênica/fisiologia , Histona Desacetilases/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Histona Desacetilases/biossíntese , Histona Desacetilases/genética , Masculino , Camundongos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Tetrodotoxina/toxicidade , Valina/análogos & derivados , Valina/farmacologia
17.
Bioinformatics ; 29(24): 3220-1, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24078713

RESUMO

UNLABELLED: It is common for computational analyses to generate large amounts of complex data that are difficult to process and share with collaborators. Standard methods are needed to transform such data into a more useful and intuitive format. We present ReportingTools, a Bioconductor package, that automatically recognizes and transforms the output of many common Bioconductor packages into rich, interactive, HTML-based reports. Reports are not generic, but have been individually designed to reflect content specific to the result type detected. Tabular output included in reports is sortable, filterable and searchable and contains context-relevant hyperlinks to external databases. Additionally, in-line graphics have been developed for specific analysis types and are embedded by default within table rows, providing a useful visual summary of underlying raw data. ReportingTools is highly flexible and reports can be easily customized for specific applications using the well-defined API. AVAILABILITY: The ReportingTools package is implemented in R and available from Bioconductor (version ≥ 2.11) at the URL: http://bioconductor.org/packages/release/bioc/html/ReportingTools.html. Installation instructions and usage documentation can also be found at the above URL.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Software , Algoritmos , Bases de Dados Factuais
18.
J Biol Chem ; 288(37): 26926-43, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23897821

RESUMO

Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/química , Histonas/química , Acetilação , Benzamidas/química , Ligação Competitiva , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/química , Concentração Inibidora 50 , Cinética , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Piridinas/química , Transcrição Gênica , Vorinostat
19.
Clin Cancer Res ; 19(13): 3681-92, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23685835

RESUMO

PURPOSE: The aim of this study was to identify conserved pharmacodynamic and potential predictive biomarkers of response to anti-VEGF therapy using gene expression profiling in preclinical tumor models and in patients. EXPERIMENTAL DESIGN: Surrogate markers of VEGF inhibition [VEGF-dependent genes or VEGF-dependent vasculature (VDV)] were identified by profiling gene expression changes induced in response to VEGF blockade in preclinical tumor models and in human biopsies from patients treated with anti-VEGF monoclonal antibodies. The potential value of VDV genes as candidate predictive biomarkers was tested by correlating high or low VDV gene expression levels in pretreatment clinical samples with the subsequent clinical efficacy of bevacizumab (anti-VEGF)-containing therapy. RESULTS: We show that VDV genes, including direct and more distal VEGF downstream endothelial targets, enable detection of VEGF signaling inhibition in mouse tumor models and human tumor biopsies. Retrospective analyses of clinical trial data indicate that patients with higher VDV expression in pretreatment tumor samples exhibited improved clinical outcome when treated with bevacizumab-containing therapies. CONCLUSIONS: In this work, we identified surrogate markers (VDV genes) for in vivo VEGF signaling in tumors and showed clinical data supporting a correlation between pretreatment VEGF bioactivity and the subsequent efficacy of anti-VEGF therapy. We propose that VDV genes are candidate biomarkers with the potential to aid the selection of novel indications as well as patients likely to respond to anti-VEGF therapy. The data presented here define a diagnostic biomarker hypothesis based on translational research that warrants further evaluation in additional retrospective and prospective trials.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Bevacizumab , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/mortalidade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(10): 4039-44, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431164

RESUMO

The cell intrinsic factors that determine whether a neuron regenerates or undergoes apoptosis in response to axonal injury are not well defined. Here we show that the mixed-lineage dual leucine zipper kinase (DLK) is an essential upstream mediator of both of these divergent outcomes in the same cell type. Optic nerve crush injury leads to rapid elevation of DLK protein, first in the axons of retinal ganglion cells (RGCs) and then in their cell bodies. DLK is required for the majority of gene expression changes in RGCs initiated by injury, including induction of both proapoptotic and regeneration-associated genes. Deletion of DLK in retina results in robust and sustained protection of RGCs from degeneration after optic nerve injury. Despite this improved survival, the number of axons that regrow beyond the injury site is substantially reduced, even when the tumor suppressor phosphatase and tensin homolog (PTEN) is deleted to enhance intrinsic growth potential. These findings demonstrate that these seemingly contradictory responses to injury are mechanistically coupled through a DLK-based damage detection mechanism.


Assuntos
Apoptose/fisiologia , Axônios/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Regeneração Nervosa/fisiologia , Animais , Apoptose/genética , Axônios/patologia , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...